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Abstract 

The internal strain induced in a crystal structure by 
lattice deformation was considered. A suitable rota- 
tionally invariant representation was introduced and 
the corresponding contribution to the elastic con- 
stants was calculated. The method is based on the 
use of crystallographic rather than Cartesian atomic 
coordinates as variables of energy derivatives, with 
full exploitation of space-group symmetry and no 
constraint on the lattice geometry. A two-body Born 
interatomic potential was assumed, for both ionic and 
molecular crystals; energy derivatives of electrostatic 
lattice sums were calculated with the Ewald series. 
Molecular groups are treated within a rigid-body 
scheme based on Eulerian angles and translations as 
inner strain variables. Results of computations of 
Mg2SiO4 (forsterite) are reported, and the importance 
of optimizing the potential parameters against experi- 
mental data is discussed. 

Introduction 

Static models of crystals account for the response of 
the atomic structure to physical agents independent 
of temperature, such as mechanical stress and electric 
field. Being simpler than dynamic models, they pro- 
vide an easier linkage between crystal properties and 
interatomic or intermolecular forces, by which the 
latter can be investigated. The property considered 
here is elasticity, following previous work (Catti, 
1985) where the method of crystal static deformation 
to calculate elastic constants was outlined. 

It is well known that when a crystal is stressed 
elastically, the induced deformation preserves the 
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translational symmetry and can be considered the 
superposition of a pure lattice (external) strain and 
of an internal strain (Born & Huang, 1954). The 
former keeps the atomic fractional coordinates con- 
stant, changing just the unit-cell geometry, while the 
latter does the opposite. In the previous paper the 
contribution of external strain to crystal elasticity was 
considered explicitly, whereas here attention is 
focused onto inner strain. This is actually a relaxation 
of the crystal structure responding to a forced lattice 
change; by taking it into account, not only are more 
reliable values of elastic constants calculated, but also 
the structure changes caused by an applied 
anisotropic stress can be predicted. 

Recently, the subject of internal strain in crystal 
structures has drawn considerable attention. A 
general thermodynamic theory was developed, where 
inner strain is considered as an independent physical 
variable on the same footing as macroscopic thermo- 
dynamic quantities (Barron, Gibbons & Munn, 1971). 
Besides, a number of experiments on uniaxially 
stressed crystals have produced energy-level shifts 
related to atomic displacements, which can be 
detected through the study of Jahn-Teller effect, spin- 
lattice coupling in electron paramagnetic resonance 
(EPR), stress-induced linear dichroism and other 
methods (Cousins, 1981; Devine, 1983). The most 
direct experimental technique to probe internal defor- 
mations in crystals relies of course on the strain 
dependence of the intensity of elastic scattering of 
X-rays or neutrons (Segmiiller, 1964). Computational 
methods are particularly valuable in this respect, 
owing to the difficulty of experiments on anisotropi- 
cally stressed crystals and to the need of interpretation 
of results when these are available. 

© 1989 International Union of Crystallography 
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The method of calculation presented here is based 
on a natural choice for the vai'iables representing the 
inner strain, and on the straightforward use of crys- 
tallographic atomic coordinates in the analytical com- 
putation of energy derivatives; the lattice strain is 
accounted for according to the previously developed 
model (Catti, 1985). A long-range Born potential was 
assumed for interatomic forces, holding for both ionic 
and molecular crystals. The presence of molecular 
groups in the structure was taken into account by 
introducing an explicit rigid-body model, which pro- 
vides a test for the 'symmetrical strain' approximation 
formerly used. 

T h e o r y  

Crystal deformation 

Let the crystal structure be defined by the lattice 
a 6 constants { k}k=l ( = a, b, c, a,/3, 3') and by the coor- 

dinates referred to the lattice basis {x,}~=l of the N 
atoms in the unit cell. Alternatively, atomic positions 
can be specified by the coordinates {X,}~=~ referred 
to a Cartesian basis; its three orthonormal vectors 
have components with respect to the lattice basis 
which form the columns of the square matrix R, so 
that X, = R-~x, holds. An external strain varies the 
unit-cell geometry only, and can be represented in 
the lattice reference frame by the metric tensor change 
G ' - G ;  for every atom we also have that x ' , -  x, = 0, 
and X', - X, = eX,, where e is the strain tensor. Further 
on in this section all quantities with a prime are meant 
to be affected by an external strain. The most 
appropriate representation of a lattice deformation 
in the Cartesian reference frame was proved to be 
the finite Lagrangian strain tensor ~1, as it is indepen- 
dent of the relative orientation of undeformed and 
deformed lattices (Catti, 1985). From a partial 
elaboration of equation (4) of the quoted paper, the 
relation between ~ and G ' - G  is obtained: 

~1 = ½Rr (G ' -  G)R; (1) 

the T superscript means matrix transposition. A pure 
inner strain leaves the lattice unvaried, so as to be 
represented naturally in crystallographic terms by the 
changes of fractional coordinates x~ + - x ,  for all atoms 
involved, while evidently G ÷ - G  = 0. All quantities 
with a + superscript are affected by internal strain. 
However, as the traditional theory of crystal elasticity 
is based on tensors, which are defined with respect 
to Cartesian bases, inner strain must be given a Car- 
tesian representation as well. 

The internal deformation is often expressed (cf 
Catlow & Mackrodt, 1982) by the set of atomic dis- 
placements in Cartesian components occurring after 
the pure lattice strain (Fig. 1): 

t t +  t = Rt-1 u,--x,  - x ,  (x,+-x,). (2) 
Nevertheless the atomic shift u', is shown by the above 

equation to depend on the relative orientation 
between deformed and undeformed lattices through 
the matrix R', so that it lacks the rotational invariance 
required to represent the inner strain satisfactorily. 
An alternative Cartesian expression of atomic dis- 
placements due to internal deformation (Born & 
Huang, 1954; Cousins, 1978) is the following: 

U', = (e+ I) ru', = (2~1+ l)R-'(x,+ - x,) 

=RrG'(x+, -x , ) .  (3) 

This quantity is indeed rotationally invariant, but has 
a less-simple geometrical meaning than u',. Besides, 
it is shown by (3) to depend explicitly on ~1 or G': 
this would cause complications in transforming mixed 
energy derivatives c92E/(gXtiO~k into c92E/cgU'.OTqk, 
because U', is a function of both x, and ~ [cf. (12) 
below and the relevant discussion]. 

The use of a third variable is proposed here to 
represent the inner strain in Cartesian terms, follow- 
ing a previous hint (Barron, Gibbons & Munn, 1971): 

u, - X~+ - X, : R-l(xt+ - x,). (4) 

A simple physical meaning can be associated with 
ut : it represents the Cartesian atomic shift which must 
occur before the lattice strain, so as to attain the same 
final atomic position as that produced by applying 
the u', shift (2) after the lattice strain (Fig. 1). The u, 
displacement is rotationally invariant, and is related 
to x, + - x ,  by (4) with no explicit dependence on O; 
it is thus the natural Cartesian representation of the 
former quantity, analogously as is ~1 for G ' - G  in the 
case of lattice strain. 

Elastic constants 

A general deformation of the crystal structure is 
the sum of an external and an internal component,  
and is therefore represented by the ~ and u quantities. 
Adopting the Voigt notation, let ~1 now mean a 6 x 1 
linear instead of a 3 x 3 square matrix, while u is a 
3 N  × 1 linear matrix containing the Cartesian com- 
ponents of inner strain (4) for every atom in the unit 
cell. Barron, Gibbons & Munn (1971) have distin- 
guished a hypothetical case where all r/k (k = 1 , . . . ,  6) 
and Uq (q = 1 , . . . ,  3N)  components are independent 
variables of the energy E (general regime), from the 

C' C 

Fig. 1. Lattice and inner strains on the (010) plane, and corre- 
sponding shifts of atom A. See the text for the meaning of 
superscripts. 



22 CRYSTAL ELASTICITY AND INNER STRAIN 

physically ordinary situation where only the TIk 'S a r e  

(macroscopic regime). In the latter case the Uq quan- 
tities are functions of the r/k'S, and are determined 
by a condition of minimum for the energy (Born & 
Huang, 1954; Catlow & Mackrodt, 1982). A second- 
order approximation of the elastic energy gives 

E I 7- = ~ V , , ~ + ½ u r V . ~ u + ~ l r V , . u ;  

(V.q-q)  hk kOT~h OTIk , (Vuu)pq + ( 5 )  
0 k O U p  (~ Uq,/  0 ' 

kO~k Ol, tq/O 

The quantities V , ,  and Vu, are 6 x 6 and 3N x 3N 
square matrices, respectively, while V, ,  is a 6 × 3N 
rectangular matrix. All energy derivatives are calcu- 
lated at the equilibrium structural configuration, as 
indicated by the zero subscript. 

The condition of minimum OE/Ouq=O (for q =  
1 , . . . ,  3N)  leads to the equation 

--1 u = - V  ~ . V . , l l .  (6) 
- !  

which can also be written as u = T,,,~I; T~, = - V  u,V,,, 
is a representation of the internal strain tensor 
(Cousins, 1978), and gives a linear approximation of 
the dependence of inner strain on lattice strain. With 
this relationship structural changes induced by 
anisotropic stress can be calculated (Catti, 1987). By 
substituting (6) into (5), the expression of energy as 
a function of lattice strain only is obtained: 

E = ~ r ( v , ,  -t - V, ,Vu,  V,,,)~I. (7) 

In the frame of the static approximation (Catti, 1985) 
the elastic constants are ehk = (aEE/a'qh a'qk)O/V, and 
the 6 x 6 matrix C of which they are components is 
derived from (7): 

C (1/V)(Vnn -' = (8) 

where V is the volume of the crystal of energy E. 
Thus the elastic constants are expressed by the sum 
of a contribution from pure lattice strain, V , , /V ,  plus 
a contribution from pure inner strain, - V , , V  5~V,,/V, 
which are called partial and inner elastic constants, 
respectively (Cousins, 1978). 

C o m p u t a t i o n a l  method 

Energy derivatives 

As a thorough account of partial elastic constants 
was given previously (Catti, 1985), the calculation of 
inner elastic constants and of energy derivatives form- 
ing the Vuu and Vu, matrices will be examined here. 
The usual two-body interatomic potential of Born- 
Mayer type (electrostatic+ dispersive + repulsive) is 
assumed, and the crystal static energy E is expressed 

by formulas given in previous papers (Catti, 1978, 
1981). For simplicity, only the electrostatic term of 
the energy Ee~ will be considered, but quite analogous 
results hold for the two terms left as well. If the 
symbol F(x) represents the Ewald double series 
calculated for an interatomic vector x within the unit 
cell [equation (3) of Catti (1978)], and ~.  e, Z, zr 
indicate Avogadro's number, the electron charge, the 
number of formula units in the unit cell and the 
electric charge on the rth atom in the asymmetric 
unit, respectively, then the following expression can 
be derived for the energy derivatives: 

0 2 E e l  Xe zzrO F(x>] 
r s 

ax,, ax+mj z L ax, axj J ....... -x, 

(excluding s = r, m = 1). (9) 

Xri means the ith fractional coordinate (i = 1, 2, 3) of 
atom r in the asymmetric unit (m -- 1 is understood), 
while x~, w is the j th  coordinate of atom s in the ruth 
equivalent position within the unit cell. This formula 
does not hold when the two atoms coincide ( s - - r ,  
m--1) ;  in this case the correct expression can be 
derived by the condition that the elastic energy of a 
rigid translation of the whole crystal be zero: 

~2 E~l +Are 2 

OXri OX 0 -- Z 
, (10)  

where the sums exclude the case s = r, m = 1; n and 
p~ indicate the number of atoms in the asymmetric 
unit and the symmetry multiplicity of the sth atom. 
Mixed derivatives with respect to atomic coordinates 
and lattice constants are given by a similar relation: 

,E°,_ 
ax,,aak - 7  Zr Z, L ~ . l x =  ; (11) 

s =  I = l xs,,, - x ,  

again the case s = r, m = 1 is excluded. The derivatives 
of repulsive ER and dispersive Eoo, Eoo terms of 
the energy are given by analogous formulas, where 
F(x) is substituted simply by the corresponding quan- 
tities FR(X), FDn(x) and Foq(x) (Catti, 1981). By 
straightforward differentiation of all lattice sums F, 
detailed analytical expressions were obtained for the 
whole set of energy derivatives, which are not 
reported here for the sake of brevity. It should be 
stressed that differentiation was performed with 
respect to crystallographic and not Cartesian atomic 
coordinates, thus preserving the lattice representation 
of the crystal structure and obtaining simpler for- 
mulas than in other treatments (Born & Huang, 1954; 
Catlow & Mackrodt, 1982). 

The required components of matrices Vu, and V.,, 
given in (5) are calculated, taking into account the 
relation (4) between atomic fractional coordinates 
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and inner strain variables: 

02E 3 02E 

OUri OUsm j i',j' RriRjti, OXrr OXs,,,s' (12) 
3 

02E = E r  ~ 0 2  E Rri 
OUri OT~k 1 OXri' 07~k 

3 6 
: E i ' E h  02F-" Oa'--'~h Rri, 

1 1 OXri' Oah O'rlk 

where the quantities Oah/O'qk w e r e  derived previously 
(Catti, 1985). It can be noticed that if the quantities 
(3) instead of (4) had been used as inner strain 
variables, then because of their explicit dependence 
on lq the calculation ofO2E/Ouri O'~k derivatives would 
have been much more complicated. 

By the above formulas the (V,,)pq and (Vn,)kq 
matrix components which are not symmetry related 
can be computed. They concern energy derivatives 
with respect to at least an atom belonging to the 
asymmetric unit. All other components are symmetry 
related to the previous ones through the equations 

32E -- ~1 02 JE ml 
OXrmi OXsn'j i"J' (S ~nl)i,i(S )j,j, 

OXri' OXsns' (13) 
02 E 3 02 E 

- 

OXr,.i Oak i'~OXri ' Oak (Sml)i'i' 

the Sm matrix represents the rotational part of the 
ruth symmetry operation of the space group, so that 
the relation x, . , - -Smx,,  holds. 

Rigid-body model 

A large number of crystal structures contain 
molecular groups, either neutral or electrically 
charged, which are characterized by prevalently 
covalent interatomic bonds. Spectroscopic studies 
and structure determinations at high pressure or tem- 
perature have shown that intramolecular deforma- 
tions are usually very small with respect to inter- 
molecular ones, so as to justify the use of a rigid-body 
approximation (Catti, 1982). In this case the inner 
strain u is simply expressed by three Euler rotation 
angles ~01, ~o2, ~3 and three Cartesian displacements 
Uol, Uo2, Uo3 of the molecular group considered as a 
rigid unit. If we introduce an internal Cartesian refer- 
ence frame denoted by the I subscript, the crystallo- 
graphic coordinates of atoms belonging to the rigid 
group can be related to inner strain coordinates by 
the relation 

xr = RPXxr+Xo, (14) 

where P(~l,~E,q~3) is the Euler matrix whose 
columns contain the vector components of basis I 
with respect to the crystal Cartesian basis, so that 
PXtr = Xr. 

The components of matrices V~u and Vu,, defined 
in (5) are now energy derivatives with respect to 

orientation angles (or rigid translations) of the 
molecular group, and to lattice strain components; 
they can be calculated straightforwardly by the 
differentiation formula 

~1 3 oE E 02E = E r  j,. - -  "OXri' Oxsj' 
O@i O~l~j r,s 1 " OXri, OXsj, O@i O@j 

. 3 OE 02Xri ' 

r OXrr Oq~i Oq~j 

where for simplicity the molecular group was 
assumed to coincide with the asymmetric unit, and 
the derivatives OXrr/O~oi and 02Xri,/Oq~ 0% are evalu- 
ated through (14) and the knowledge of P(qh,  ~P2, q~3). 
As for derivatives with respect to q~i and ak we have 

n Ps 
O2E--~~r.s~-~i',j'~~m/_.,Z..,/, O2E OXri'OXsmj' 

Oq~i Oak l l l OXri, OXsm j, 0~0 i Oak 
n 3 _ _  3E  32Xri, ) .  02 E OXrc F 

q-~l r~i'\OXri, Oak 0~0 i OXrCO~oiOak/' 

(16) 

the quantities axs,~j,/Oak and 02Xrr/O~o~ aak can be 
calculated from (14) or similar relations for sym- 
metrical coordinates, taking into account the depen- 
dence of R on lattice constants ak. 

If there are two or more symmetry-related 
molecular groups in the unit cell, then the ruth rigid 
group is characterized by the orientation matrix P,,, = 
S,,P. As Pm is a function of ¢1m, (~2m, q03m, the 
previous equation can be solved to give the relations 
~0i,. (~0i) between Euler angles of the ruth symmetrical 
group and those of the group chosen as asymmetric 
unit. In the independent energy derivatives of type 
(15) and (16) at least one differentiation angle belongs 
to the asymmetric unit group; all other derivatives 
can be related to the previous ones as follows: 

02E dqo i dq~j O2 E 

Oq~irn O~Ojn' d~im dq~sm O~i 0%. 

where SINS. = S.,. 
In a general case, the crystal structure may contain 

molecular groups and single atoms or ions together; 
then the linear matrix u characterizing the internal 
strain would have as components both rigid-body 
rotations and translations and Cartesian displace- 
ments of isolated atoms. 

Symmetry considerations 

The components of matrices V,u and Vu n are energy 
derivatives calculated at zero strain: therefore they 
must obey the full space-group symmetry of the 
equilibrium crystal structure, as implied by (13). It 
follows that if symmetry-related atoms or molecular 
groups are treated formally as independent,  then 
the corresponding computed deformations in the u 
vector of (6) are symmetrical as well. As the inner 
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deformations must be consistent with the structural 
symmetry, that can be broken by the lattice strain 
only: for instance, a fourfold axis is destroyed by a 
uniaxial strain along a different lattice direction, or 
a mirror plane is broken by a shear strain on a different 
lattice plane. If an atom or rigid group lies on a 
symmetry element which cannot be destroyed by the 
lattice strain, then the symmetry-constrained coordin- 
ates undergo a zero inner deformation. In particular, 
the centrosymmetry of a structure can never be broken 
by a static elastic strain within this model, because 
any lattice strain is consistent with the symmetry 
centre. 

Thus in the treatment of internal deformation the 
simplest scheme is to consider the degrees of freedom 
of atoms or molecular groups belonging to the asym- 
metric unit only as independent variables; however, 
energy derivatives must now include the shifts of 
symmetry-related atoms or groups. These symmetry- 
constrained derivatives are given by the formulas 

02E ) p, 3 
= P r E m E i ' - -  

OXri OXsj S 1 I 

Oxr~ Oak/s  = pr Oxri Oa-----------~kk" 

02E 

OXri OXsm i' 
(Sm),,j, 

(17) 

By substituting into (12), the corresponding values 
of the (V,,u)eq and (V,u)kq components can be derived, 
if we take into account that the u vector now contains 
atomic shifts within the asymmetric unit instead of 
the whole unit cell. 

A computer program was written in Fortran to 
calculate the contribution of inner strain to elastic 
constants on the basis of the above method. It is made 
up of two modules: the first computes the energy 
derivatives (10) and (11) and writes them onto a disk 
file; these are read and worked out by the second 
module, according to the rigid-body scheme if 
required. 

Discussion 

Calculations of crystal elastic properties by static 
methods are usually based on an extension of Hilde- 
brand's approximation (Tosi, 1964), implying that 
changes of entropy and vibrational energy due to an 
isothermal static deformation are very small com- 
pared with the change of static energy E and can be 
neglected. This is summarized by the relation 

Chk = ( O2 F /  OTqh OT~k )O / V "-- ( O2 E / Orlh Orlk )O / V, 

where F is the Helmholtz free energy (Catti, 1985). 
Neglecting the effect of thermal vibrations on crystal 
elasticity should not introduce appreciable errors in 
the results, so long as the temperature is much lower 
than the melting point. The validity of this procedure 
is confirmed when semiempirical parameters of the 
interatomic potential are fitted by the static method, 
and then the optimized potential is used to calculate 

vibrational properties (e.g. spectroscopic frequencies 
or heat capacity, entropy) which compare well with 
experimental data. This was accomplished recently 
for the polymorphs of Mg2SiO4, whose lattice- 
dynamical and thermodynamieal properties were 
reproduced successfully with a potential fitted to data 
of binary oxides (Price, Parker & Leslie, 1987). 

In order to evaluate the importance of the inner- 
strain contribution to elastic constants, and to test 
the method of calculation proposed, a full calculation 
was performed for forsterite, a-Mg2SiO4, whose 
orthorhombic structure (Hazen, 1976) has a great 
crystal-chemical and mineralogical importance. Its 
main feature is the presence of SiO4 tetrahedra with 
Si-O bonds much stiffer than Mg-O bonds in MgO6 
coordination octahedra, so that a rigid-body model 
for SiO4 groups is advisable. In a previous calculation 
(Catti, 1982) only the lattice strain was taken into 
account and the parameters of the Born potential 
were fitted to some structural variables and to six 
elastic constants (excluding shear components c44, 
c55, c66). With these parameters all elastic constants 
were recalculated according to the present method 
which includes the inner strain contribution, obtain- 
ing a slightly worse agreement with experimental 
values than before; in particular the diagonal com- 
ponents c1~, c22, c33 were substantially lower. 

Therefore, a full optimization of energy parameters 
was carried out in the new model; the expression of 
two-body potential terms is 

E, 2 = e 2 z d j  ro + fl,j exp [(r, + rj - r,j)/ (p, + pj)] 
6 8 - d, d J  r i j -  qiqJ r O, 

where r 0 is the interatomic distance. The dispersive 
coefficients d~ and q~ used are the same as in the 
previous work (Catti, 1982), and come from experi- 
mental refractive data of MgO; the/3 o values are the 
Pauling coefficients. Six parameters were optimized: 
the charges Zo, ZMg, the repulsive radii ro, rMg and 
the hardness parameters Po, PMg of oxygen and mag- 
nesium atoms. The Si charge is given by the electro- 
neutrality condition ZS~=--4Zo--2ZMg, while the 
repulsive and dispersive interactions of Si are 
neglected because very small. The fitting process was 
based upon 21 equations involving nine elastic con- 
stants and twelve structural variables [cell edges, 
orientation angles and translations of the SiO4 rigid 
group, coordinates of the Mg(2) atom]. All details 
will be reported and discussed in a separate paper 
(Catti, in preparation). The following best values of 
parameters were obtained: Zo = -1.20, ZMg = 1"59 e, 
ro=1"25, rM~=0-81, po=0"135, pMg=0"125,~. It 
should be noticed that they correspond to a larger 
ionicity and larger repulsion than previous values 
(Catti, 1982). This stiffer potential is consistent with 
the structural relaxation under stress which is implied 
in the inner strain model. 
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Table 1. Elastic constants (GPa) of forsterite, 
Mg2SiO4 

Experimental (Suzuki et al., 1983), calculated (partial, inner, total) 
values and total/experimental ratios are reported. For shear com- 
ponents, partial and inner values are given for a non-symmetrical 
and a symmetrical lattice deformation. 

Experi- 
mental Partial Inner Total 

cll 329 351 22 329 1.000 
c22 200 213 15 198 0.990 
c33 236 243 8 235 0.996 
cl2 67 61 -7 68 1.015 
ct3 68 62 3 59 0.868 
cz3 73 68 -8 76 1.041 
c4,, 67 97 84 28 16 68 1.015 
c55 81 131 96 42 7 89 1.099 
c66 81 101 91 20 10 81 1.000 

The optimized parameters were used to compute 
the elastic constants reported in Table 1, where they 
are compared with experimental values (Suzuki, 
Anderson & Sumino, 1983). Contributions due to 
pure lattice strain and to pure inner strain, as well as 
total values, are shown distinctly. Besides, for shear 
constants Can, c55, c66 the values corresponding to a 
symmetrical and to a non-symmetrical lattice defor- 
mation (Catti, 1985) are given. In the former case the 
unit-cell angles a, /3, 3' change symmetrically with 
respect to the undeformed configuration, whereas in 
the latter the convention leaving the deformed e' 
vector parallel to c and b*' parallel to b* is assumed. 
The symmetrical deformation was introduced as a 
reasonable model for calculating the shear elastic 
constants when the contribution of inner strain is 
neglected in the frame of a rigid-body scheme. If 
inner strain is taken into account, the total value of 
each elastic constant is obviously independent of the 
kind of lattice deformation assumed. The data of 
Table 1 confirm that the model of symmetrical strain 
gives a better agreement between calculated partial 
elastic constants and experimental ones. 

In a comparison of the total calculated values with 
those measured, a very good overall agreement is 
observed, with an average relative deviation of 3.5 %. 
The largest deviations are found for the c13 and c55 
components, which are smaller and larger by 13 and 
10%, respectively, than the corresponding experi- 
mental values; for all other constants, the average 
relative deviation of 1.2% obtained is really excellent 
and practically within the experimental error. It 
should be remarked that both the Cl3 and c55 com- 
ponents refer to a stress-strain effect on the (010) 
plane; this contains the [001] direction of chains of 
MgO6 octahedra sharing edges, while along [100] 
such chains are linked via SiO4  tetrahedra sharing 
corners with them. Thus a strong crystal-chemical 

anisotropy characterizes the bonds on this plane 
(rigid packing inside the chains, and flexible connec- 
tion between them), so that a two-body central-force 
model for Mg-O and O-O interactions may not be 
fully adequate for the present case. 

Two other previous calculations of elastic constants 
of forsterite, including the effect of inner strain, gave 
average relative deviations from experimental values 
of 12.7% (Matsui & Busing, 1984) and 8.9% [(Price 
& Parker, 1984): best result from potential P5]. In 
both cases the dispersive energy was not taken into 
account. In the first paper the elastic properties were 
computed indirectly by a numerical procedure, and 
the Zing charge was kept fixed at the ideal value ÷2 
without optimization. A subsequent refinement 
(Matsui & Matsumoto, 1985), where the ZMg charge 
was relaxed and bond-distance-stretching (Si-O) and 
bond-angle-bending (O-Si-O) energy terms were 
introduced, gave an average relative deviation of 
11.9%. In the second paper, the computation fol- 
lowed the method of Catlow & Mackrodt (1982), 
using a Morse potential to account for Si-O interac- 
tions instead of the rigid-body model. The improved 
results obtained in the present work are probably 
related to the inclusion of a dispersive energy term 
(not fitted, but calculated from measured data), and 
to details of the optimization process which will be 
discussed elsewhere (Catti, in preparation). 
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